Math 246A Lecture 20 Notes

Daniel Raban

November 9, 2018

1 The Residue Theorem

1.1 The residue theorem

Let $f \in H(\{z : 0 < |z - a| < R\}$. Let $\gamma = \{z : |z - a| = r\}$ for 0 < r < R. Then

$$\alpha = \frac{1}{2\pi i} \int_{\gamma} f(z) \, dz$$

is independent of r. If the singularity is removable, then $\alpha = 0$.

Definition 1.1. The quantity α is called the **residue** of f at a.

Example 1.1. Let $f(z) = \sum j = 1^n c_j/(z-a_j) + g$, where g is holomorphic on $\{z : |z-a| < R\}$. Then $\alpha = c_1$.

Example 1.2. We can write $e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n}$ for $0 < |z| < \infty$. Then $\alpha = 1$.

Theorem 1.1 (Residue theorem). Suppose that $f \in H(\Omega \setminus \{a_1, \ldots, a_n\})$ with $a_j \in \Omega$. Let $\gamma \subseteq \Omega \setminus \{a_1, \ldots, a_n\}$ be such that $\gamma \sim 0$ in Ω . Then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{j=1}^{n} \operatorname{Res}(f, a_j) n(\gamma, a_j)$$

Proof. This follows from the general form of Cauchy's theorem.

1.2 Solving real integrals using contour integration

We can use the residue theorem to solve real integrals.

Example 1.3. Use the change of variables $z = e^{i\theta}$.

$$\int_0^{2\pi} \frac{1}{3+\sin(\theta)} \, d\theta = \oint_{|z|=1} \frac{1}{3+(z-1/z)/2i} \frac{1}{iz} \, dz = \oint \frac{2}{z^2+6iz+1} \, dz$$

If we factor the bottom and apply the residue theorem, we get $2\pi/\sqrt{8}$.

Remark 1.1. A good way to check you answer in a case like the above example is to check whether the answer is real. It should be because the integrand was real.

Example 1.4.

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} dx = \lim_{R \to \infty} \operatorname{Re} \int_{-R}^{R} \frac{e^{iz}}{z(1+z^2)} dz$$

This is the integral over real-line part of a upper semicircle contour. Call this γ_1 , and let γ_2 be the circle part of the semicircle contour. Using the residue theorem, the real part of the integral over $\gamma_1 + \gamma_2$ is π/e , and we just need to show that the integral over γ_2 goes to 0 as $R \to \infty$.

Example 1.5.

$$\int_{-\infty}^{\infty} \frac{x \sin(\lambda x)}{1+x^2} \, dx = \operatorname{Im} \int_{-\infty}^{\infty} \frac{z e^{i\lambda z}}{1+z^2} \, dz = \lim_{A,B\to\infty} \operatorname{Im} \int_{-A}^{B} \frac{z e^{i\lambda z}}{1+z^2} \, dz$$

View this as the integral over γ_1 , the real-line part of a rectangle $\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ with vertices $-A, B, B + i \min(A, B), -A + i \min(A, B)$ that extends into the upper half plane.

$$\begin{split} \int_{\gamma_1+\gamma_2+\gamma_3+\gamma_4} &= 2\pi i (ie^{-\lambda}/2i) = \pi e^{-\lambda} i\\ \left| \int_{\gamma_3} \right| &\leq \frac{(A+B)(2(A+B))}{(A+B)^2 - 1} e^{-\lambda(A+B)} \to 0\\ &\left| \int_{\gamma_2} \right| &\leq \int_0^B \frac{B}{B^2 - 1} e^{-\lambda y} \, dy \to 0\\ &\left| \int_{\gamma_4} \right| &\leq \int_0^B \frac{A+B}{A^2 - 1} e^{-\lambda y} \, dy, \end{split}$$

which should go to zero. We will finish this next time.